Deterministic propagation of
suprathermal ions
through the heliosphere
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Diffusion for energetic particles?

Convectional wisdom uses spatial diffusion
to describe energy spectra
(Fisk+ 80, Yu+ 17).
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SHOCK ACCELERATION OF ENERGETIC PARTICLES IN COROTATING
INTERACTION REGIONS IN THE SOLAR WIND

The particle intensity increases upstream from the CIR are relatively steady in time, and thus their behavior
should be described by the standard steady-state equation for propagation in the solar wind. In the corotating
frame, the equation for f'in a given magnetic flux tube, or equivalently along a given streamline in Figure 1, is
(Parker 1965; Fisk, Forman, and Axford 1973; Ng 1972)
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It is assumed here that the particles are nonrelativistic; i.e., equation (1) is written in terms of particle speed as
opposed to particle momentum. The first term on the right-hand side describes the spatial diffusion of the particles.
It is assumed that particles move only along, and not across, magnetic field lines, in which case k = k| cos? i, where
x| is the diffusion coefficient for propagation along the mean magnetic field B, and i is the angle between r and B.
Tim remaining two terms describe the effects of convection and adiabatic deceleration by the solar wind; V' is the
speed of the solar wind in the inertial frame fixed with respect to the Sun, i.e., it is the radial component of the solar
wind in the corotating frame.

limit of large v. A more accurate approximate solution to equation (1) will also contain a power-law dependence on
v, and other weaker dependencies on v and r. It can readily be shown that to the next highest orders the approximate
solution to equation (1), for the case x = xqvr, which satisfies equation (2) and is finite as r — 0, is
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where the normalization constant has been ignored. This solution holds along a given magnetic flux tube in the solar
wind, or equivalently along a given streamline in the corotating frame depicted in Figure 1; fis to be evaluated at r,
the intersection of this streamline with the forward or reverse shock.
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Suprathermal helium in corotating interaction regions: combined
observations from SOHO/CELIAS/STOF and ACE/SWICS

As we show in Fig. 6, we fitted the spectra of CIR 04 with the
following theoretical expressions (2) (downstream of the shock)
and (3) (upstream of the shock) given by Fisk & Lee (1980), as
this event is associated with clear turnover spectra in the fast-
wind region,
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where f is the velocity distribution function, v is the ion speed,
r 18 the heliocentric distance of the observer, r, is the heliocentric
distance of the reverse shock, V' is the solar wind speed, «q is a
constant (ko = x/vr, where « is the diffusion coefficient), and 3 is
the inverse of compression ratio at the CIR-driven shock.
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Diffusion works less often than thought...
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Suprathermal

Intensity
(PEPSSI)

Bulk speed
(SWAP)

Kollmann+ 19A
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PEPSSI spectra

diff. intensity [1/(keV cm? sr s)]
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Equations

 Maxwell's equations

* Non-relativistic speeds
* Frozen-in plasma

* Radial solar wind

e B~1/R

Theory based on Northrop 63 & Roelof+ 15

Guiding center drifts

Energy change within fields

No gradient & curvature drifts
Near-azimuthal magnetic field
Conservation of magnetic moment

Conservation of phase space density



Deterministic propagation
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Deterministic propagation

cooling
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Deterministic propagation
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Propagation branches
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Propagation branches
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Most particles released from outer CIR
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Summary

Dipole field Parker field
Corotation Outflow
Low energies Suprathermal energies move deterministically,

High energies without significant scattering.
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